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AbstrneL We have reantly generalized Skiyanin's approach d mnstruaing open m e -  
pabie quanium spin chains w ihe rase oi PT-invariani R mairices. iiere we iormijiaie 
a fusion pmcedure for such chains. In panicular, we show that the fused Uansfer m a t h  
can be expressed in lerms of products of the original transfer matrix and products of 
celfain quantum determinants which can he aplicitly evaluated. Applicalions of these 
results include mnstruaing open integrable higherspin chains, as well as obtaining func- 
tional equations for transfermatrix eigenvalues, which may be solved ty an analylical 
Bethe ansaw. 

1. Introduction 

Given a trigonometric R matrix (i.e. a solution of the Yang-Baxter equation) related 
to the fundamental representation of a Lie algebra g. the so-called fusion procedure 
[l] provides a way of constructing new R matrices related to higherdimensional 
representations of this algebra. Such an R matrix can be used to construct a closed 
integrable quantum spin chain of higher spin, whose transfer matrix is related to that 
of the axresponding chain in the fundamental representation. That is, the fusion 
procedure for R matrices implies a fusion procedure for the corresponding closed- 
chain transfer matrices. This result is important for solving [l, 21 the higher-spin 
chain. Moreover, this result also leads to a functional equation for the eigenvalues of 

implied by the unitarity of the R matrix, can be solved through the so-called analytical 
[3] Bethe ansatz. 

Sklyanin [4] introduced a novel approach for constructing open integrable quantum 
spin chains, whose R matrices are symmetric (i.e. both P and T invariant) as well as 
unitary and crossing-unitary. An important element of this approach is the so-called 
IC matrix, which can be interpreted as the amplitude for a particle to reflect elastically 
from a wall. In general, there is a family of IC  matrices which is mmpatible with a 
given R matrix. Given such R and I< matrices, one can construct a corresponding 
open-chain transfer matrix. For the special case of spin-; AY), the eigenstates and 
eigenvalues of this transfer matrix can be determined by an algebraic Bethe ansatz. 
p ~ i s  model was first solved via the coordinate Bethe ansatz by Alcaraz el a1 [5 ] . )  

In 161, a fusion procedure for AI') IC matrices was formulated, and was used to 
solve the open spin-1 AY) chain with boundary terms. 

r^r'.Fn* ..."*.:,.-. Ti.:* F.."r+:""", nn..ntinn ,"nnthnr . I r k  ,," .,,l,i:+:"".,, nn...,,:n" 
LIIGDC YOI IDLCI  1IIaI11-. ,110 L Y L I C L n Y L I a I  'yIUaL,"'., LY6'LL.'. ".LLL a.. """IL."..U. -yYP,.",. 

t Permanent address: Depanment of Physics, Univelsity of Miami, Coral Gables, FL 33124, USA 

0305-447019uo92533+11$04.50 1992 IOP Publishing Ltd 2533 



2534 L Mezincercu and R I Nepomechie 

For particular choices of boundary terms (corresponding to particular K matri- 
ces), the spin s = $ and 1 AY) chains have the quantum algebra symmetry Llq[su(2)] 
[7-91. For q a primitive root of unity, these chains are related to the c < 1 and c < 
unitary minimal models, respectively [5, 7. 

We have recently generalized [IO] Sklyanin's approach of constructing open inte- 
grable chains to include non-symmetric R matrices which are only PT invariant. All 
of the trigonometric R matrices found by Bazhanov [ l l ]  and Jimbo [12] are. of this 
type. We have used this formalism to construct a large class of integrable models 
which have quantum algebra invariance [13, 141. 

In this paper, we. formulate a fusion procedure for K matrices corresponding to 
such nonsymmetric R matrices. Furthermore, we deduce a fusion procedure for the 
corresponding open-chain transfer matrices. These results can be used to construct 
integrable open chains with spins in higher-dimensional representations of an arbitrary 
algebra g. In general, these representations are reducible, Le. the chains invoke spins 
in two or more irreducible representations. This suggests that there may be a further 
higher symmetry in such models. (The same is true for the corresponding closed 
chains. ) 

In a separate publication [15], we use these fusion results and an analytical Bethe 
ansatz to solve the large class of models found in [13] and [14] which have quantum 
algebra symmetry. We find that the Bethe ansatz equations for these open chains 
are given by certain 'doubihngs' of the Bethe ansatz equations for the corresponding 
closed chains. 

2. Fusion pmcedure for R matrices 

We begin by reviewing the fusion procedure for R matrices. We assume that the R 
matrix, which acts on C" @ C", obeys the Yang-Baxter equation 

R 1 2 ( U  - v ) R 1 3 ( u ) R 2 3 ( v )  = R 2 3 ( v ) R 1 3 ( u ) R 1 2 ( u  - ') (2.1) 

as well as PT symmetry 

Pl2Rl2(")Pl2 = R2l(U) = R12(u)f ' f~  (2.2) 

where PI, is the permutation matrix, P I 2 ( z  8 y) = y 8 z for I, y E C", and t i  
denotes transposition in the ith space; unitarity 

--,'\-,--z,\ R . - ( w ~ R - . ( - ~ )  = C(.) (23)  

where ( ( U )  is some even scalar function of U ;  crossing symmetry 

R12(u)  = VIRl2(-u - p)"Vl = V,"R,~(-U - P)'~V:' (2.4) 

where V 2  = 1 (in this paper, we use the notation VI = V @ 1, V, = 1 8 V ) ;  and 
regularity 

R12(0) = c(o)"2P,2. (2.5) 
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We record here for future reference the useful identity 

qRiz(u)Vi  = VzRzi(u)Vz. (2.6) 

A fact which is essential for establishing the fusion procedure is that at  U = -P, 
the matrix R,,(u) degenerates to a quantity proportional to a projector onto a one- 
dimensional subspace. Indeed, one can show that 

obeys 

(2.9) 

where A is an arbitraly matrix acting on C" 0 C". Thus, defined as 

= 1 - P- 12 (2.10) 

is also a projector. Note that these projectors are not symmetric, = pr 21 # 
PZ. 

For U = u + p, the Yang-Baxter equation (2.1) degenerates to 

&R13(u)R& + P )  = + P ) R 1 3 ( u ) k  (2.11) 

which implies that 

These two solutions are presumably related by a gauge transformation. 
Similarly, one finds the fused R matrices 
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Indeed, one can generate an entire hierarchy of fused R matrices which obey Yang- 
M e r  equations of the form 

R,, , , (u - U ) R ~ , ~ ~ ( U ) % ~ ~ , ( U )  = R ~ ~ ~ ~ ( u ) R ~ , ~ ~ ( u ) R ~ , ~ ~ ( u -  U ) .  

However, we shall not explicitly consider higher fused R matrices here. 
The unitarily and crossing-symmetry properties of the fused R matrices can be 

determined from a knowledee of the oorresponding properties of the. nrigina! R 
matrix. We find that 

L Mezincescu and R I Nepomechie 

(2.18) 

R ( 1 2 ) 3 ( U ) R 3 ( 1 2 ) ( - U )  = C ( U ) C ( U  + p)& 

R ( 1 2 ) 3 ( U )  = y 2 1 ) R { 1 2 ) 3 ( - U  - p)"ylZ) = V,'3R3(12)( -U - f)'sV,'s 

R3(12)(u) = V3R(12)3(-~ - p ) " v 3  = ~ ~ ~ % ( i ~ ) ( - ~ -  P )  13Vtl2 (12) 

(2'9) 

and 

(220) 

(221) 

where 

vi,,, ,"I = P.$yv&. (2.22) 

In obtaining the crossing-symmetry formulae, we use the result 

F;v,v2PA = 0 (2.23) 

which follows from the degeneration of the identity (2.6) at U = -p. 

3. Fusion procedure for K matrices 

As mentioned in the introduction, IC matrices are important elements in Sklyanin's 
construction of open integrable chains. For a PT-invariant R matrix, the fundamental 
'reflection-factorization' relations obeyed by I<- (u )  and IC+(u) are [4, 101 

R 1 2 ( u - ~ ) K ~ ( u ) R 2 , ( ~ + ~ ) I C ~ ( ~ ) =  K ~ ( u ) R ~ ~ ( u + u ) I C ; ( U ) R ~ ~ ( U -  U )  

(3.1) 

and 

R12(-u+ U ) K ~ ( ~ ) " M ~ ~ R ~ ~ ( - Z L - U - ~ P ) M ~ I ( ; + ( U ) ~ ~  
= IC~(U)i2MlR12(-u  - U -  2 p ) M ~ 1 1 C : ( ~ ) f L R z l ( - ~  t U )  (3.2) 

respectively, where M E V ' V .  These relations correspond to the constraint of 
factorized scattering in the presence of a wall. 

In order to obtain a fusion formula for [ < - ( U ) .  we follow the Same strategy em- 
ployed for R matrices: namely, we consider the degeneration of its defining relation. 
Setting U = U 4- p in (3.1), we obtain 

~ ~ ; , ~ ' ; ( U ) R ~ ~ ( Z U + P ) I C ; ( U +  p )  = K , ( u + ~ ) R ~ ~ ( ~ u + P ) I ~ ; ( u ) ~ ~  (3.3) 



Fusion procedure for open chainr 2537 

which implies that 

obeys the reflection-factorization relation 

R 3 ( 1 2 ) ( U -  u ) K F ( U ) R ( 1 2 ) 3 ( U  + u ) K G 2 ) ( v )  

= K ; 2 ) ( ~ ) % ( 1 2 ) ( ~  + v ) K g ( ~ ) R i 1 2 ) 3 ( ~ -  U ) .  (3.6) 

The quantity K & ) ( u )  = IC- ( U  - p )  satisfies a similar relation, with R and R' 
interchanged. 

1 U 2, transposing, and shifting U + U + p )  that 

(21) 

we now mm to K + ( u ) :  m.e degeneratlnn nf ( 3 2 )  hp!ies (after pI?rmuting 

~ & K ~ ( ~ ) " M ~ R ~ ~ ( - 2 ~ - 3 p ) M ; ' h ; + ( u + p ) ' ~ ~ ~  = 0. (3.7) 

This result and the identity 

M ; ' R l , ( ~ ) M l  = M,R,,(u)M;' (3.8) 

can be used to show that the fused ICt matrix 

Further justification for considering this relation will be given in the next section. 
There is an automorphism [4, 101 bemeen the IC- and IC+ relations, (3.1) and 

(3.2): namely, given a solution K - ( U ) ,  then I I - - ( - u  - p ) * M  is a solution I<+(u) .  
One can establish a similar automorphism between the relation for IC(:2)(u) (3.10) 
and the relation for I C [ ; 2 ) ( ~ ) .  
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4 Fusion prucedure for transfer matrices 

Given an R matrix with the properties (2.1)-(2.5) and KF matrices satisfying (3.1) 
and (3.2), the corresponding openchain transfer matrix i (u)  k given by [4] 

L Mezincercu and R I Nepomechie 

t ( u )  = tr, K ~ + ( u ) ~ - ( u )  (4.1) 

T ( U )  = T(u)K-(u)?(u)  (4.2) 

where 7 - ( u )  is given by 

and T( U), ?f'( U) obey 

R I Z ( U  - v)T, [u)T2(v)  = T 2 ( U ) T , ( U ) R 1 2 ( U - -  v) 

% ( V ) M U  + V ) T l ( U )  = T,(u)R,z(u + v ) ~ z ( v )  

R,,(-u + U ) . i . , ( U ) . i ; ( U ,  = ? ~ ~ U ~ ~ 2 ( U ) R , z ( - u  + U). (4.3) 

T( U) is called the moncdromy matrix, and ?(U) obeys the same algebraic relations 
as T(-u)- ' .  The quantity 7 - ( U )  satisfies the same relation (3.1) as K-(U); and 
the transfer matrix constitutes a one-parameter commutative family 

[t(.u),i(v)l = 0 for all u , ~ .  (4.4) 

Our first task is to construct a eansfer matrix i( U) for the fused quantities that 
we have described. Let us consider 

f(.) = tr,z I c ; 2 ) ( 4 q 2 ) ( 4  (4-5) 

where 

and 

We observe that 3 y z ) ( u )  obeys the same relation (3.6) as K;2,(u)  and, therefore, 
the same fusion formula holds: 

7 y 2 ) ( u )  = i ) :q-(u)R21(2u+ P)'T;(u + P ) F ~ .  ( 4 4  

In order to establish the commutativity 

[ t ( " ) , i ( U ) I  = 0 (4.9) 
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we. generalize a similar computation described by Sklyanin [4]. In particular, we make 
use of the unitarily relation (2.19), as well as the relation 

Mc1R(1z)3(-u - ~ P ) * ~ ~ M ~ R ~ , ~ ) ( U ) ~ ~ '  = C(u)C(u + p)ph (4.10) 

which follows from (2.19)-(2.21). Moreover, we also use the reflection-factorization 
relations (3.6) and (3.10) which are obeyed by KC2) and K&), respectively. Indeed, 
starting from the KE2) relation, it ws by demanding the commutativity (4.9) that we 
first obtained the K&) relation. 

We turn now to the main task of obtaining a fusion formula for the transfer 
matrix. This invokes a generalization of the trick employed in [6]. Substituting into 
the definition (4.5) of i ( u )  the expressions (3.9), (4.8) for K&)(u)  and 7jy2,(u), 
respectively, we obtain 

i ( u )  = trl2{FLKzf(u+ P ) M ; ' R , , ( - Z ~  - 3 ~ )  

x M2i(:(u)7;(u)i1,,(2u + p ) 7 F ( u  + P ) ] .  (4.11) 

Using the identity P$ = 1 - &, we obtain the difference of two terms: 

i ( u )  = trlZ{K:(u + P ) M , R ~ Z ( - ~ ~  - 3 ~ )  

x M;'K:(u)q-(u)R,,(2u+ P)72- (U+P)J  

- trlz{&I<$(u + p)M,'RI,(-2u - 3 p )  

x M~K:(u)T-(~)Rx(~~+ P ) ' C ; - ( ~  + P I ) .  
The first term can be expressed as a product of two transfer matrices, while the 
second term can be expressed as a product of quantum determinants. Indeed, the 
fust term can be cast as 

tr12{[K$(u+ p)K:(u)"M;'RIz( -2 .u  - 3 p ) " M l ] "  

X [ ' ~ ~ ; ( . U ) R Z ~ ( ~ ~ + P ) ~ - ( U + P ) ] }  

= trl2{K$(u+ P ) I ( : ( ~ ) ~ ' M ; ' R ~ ~ ( - ~ ~ -  3 ~ ) "  

x M ,  [T- (u )R2 , (2u+  P ) 7 F ( U + P ) 1 1 ' }  

= trii{K;(.+ m ) K f ( I l ) f l M ; 1 R I q ( - 2 u -  3 p p  

x M , R 2 , ( 2 u +  p) *"T ; (u )"7L(u+  P ) } .  

Using the fact 

M ; ' R I Z ( - 2 ~  - 3p)"M1R2,(2u + P ) * '  = C(2u-f 2 P )  (4.12) 

we mnclude that the first term is equal to 

C(2u + 2 P ) l ( u ) i ( u  + P I .  



(4.14) 

and using the property (29) of the projector ?G, we conclude that the second term 
is equal to a product of quantum determinants 

A (K+(u)l  A {7- (u) l  

where 

A ( K + ( u ) }  = t r l z { ~ ~ V , V z K ~ ( u + p ) M ~ ' R l Z ( - 2 u - ~ p ~ M ~ ~ ~ ~ ~ ~ }  (4.15) 

A { 7 - ( u ) }  = t r l z  { ~ G ; ; ~ ; ( U ) R Z ~ ( ~ U  + P ) ~ ; ( U  + p)vlV,}. (4.16) 

In short, we have the following fusion formula for the transfer matrix 

i ( u )  = C ( 2 ~ + 2 p ) t ( u ) t ( ~ + p ) - A { K + ( u ) } A ( 7 - ( ~ ) } .  (4.17) 

This formula, which expresses the fused transfer matrix in terms of quantities related 
to the original system, is the main result of this paper. ' he  next section is devoted 
to evaluating the quantum determinants that appear in this formula. 

5. Evaluation OF quantum determinants 

Recalling the expression (4.2) for 7 - ( u ) ,  one can show that A { T ( u ) )  factors into 
a product of quantum determinants, 

A (7-( U ) }  = 6 { T ( u ) )  A ( I < - - ( % ) }  6 { ? ( U ) }  (5.1) 

Let us now assume that the monodromy matrix T ( u )  is given by the following 
product of R matrices 

Ti(u) = Rl,N(U)Rl , IV - - I (U) . . .R~ ,~ (U)  (5.4) 
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~ ; ; R ~ , ~ ( ~ ) R ~ , , , , ( U  + P)PG = C ( U  + P)FL m = 1 , 2 , .  . . , N ,  (5.6) 

(which can he proved wing the unitarity and crossing-symmetry properties of R( U). 

and the expression (27) for &), it follows that 

6 { T ( u ) }  = 6 { f(u)} = C(u + P ) ~ .  (5.7) 

In particular, we see explicitly that all the quantum determinants are c-numbers. It 
follows from the fusion formula (4.17) and the commutativity (4.9) that also 

[? (U) ,? ( . ) ]  = 0 .  ( 5 4  

Without further information about KF( U), the corresponding quantum determi- 
nants A { K F ( u ) )  cannot be evaluated. Here we consider the particular case [13, 
141 

K - ( u )  = 1 K + ( U )  = M .  (5.9) 

These are solutions of the reflection-factorization relations (3.1) and (3.2) provided 
that the R matrix satisfies 

[fil,(.)? R I , ( . ) ]  = 0 (5.10) 

where R = PR.  Jimbo has observed [12] that there is a large class of trigonometric 
R matrices for which this relation is valid. The corresponding open chains have (13, 
141 quantum algebra symmetry. For these K matrices, we have 

A { A - ( u ) }  = t r 1 2 { ~ ~ V l V 2 R l , ( 2 ~ + p ) }  

A { K + ( u ) }  = t r l z { ~ ~ V ~ ' V ~ f ' R l z ( - 2 t L - 3 ~ ) } .  (5.11) 

These expressions can be further simplified with the help of some new identities. The 
degeneration of the relation (5.10) at v = - p  yields 

f M u ) P G  = k R 2 1 ( 7 L )  (5.12) 

which implies 

R12( U )  VI V, p; = p; V2 RI 2 (  7 1 )  (5.13) 

and therefore 

P i V l  V*RI2(U)P& = 0 .  (5.14) 
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One can now show that 
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FGVlV2R12(u)pG = g(u)pG = pGV:1ViaR12(u)pfi (5.15) 

where the scalar function 

g(u) = tr12 R12(u)Yv2pG (5.16) 

b related to the function C(u) which appears in the unitarity relation (23) by 

C(u) = g(u)g(-u). (5.17) 

It should be emphasized that the decomposition (5.17) is not unique. We conclude 
that 

A ( K - ( U ) )  =g(2u+p) A { l C + ( u ) }  =g(-2~-3p). (5.18) 

Remarkably, for the case of quantum algebra symmetry, all the quantum determinants 
in the fusion formula (4.17) are expressed entirely in terms of the known function 
du). 

6. Discussion 

We have formulated a fusion procedure for open chains with PT-invariant R ma- 
trices. We have worked out in detail the example of a transfer matrix for which the 
auxiliary space is fused and the quantum space is not fused. These results can be 
directly applied [U] to exactly solving the large class of models with quantum algebra 
symmetry which we previously found [13, 141. In order to construct and solve chains 
with spins in higher-dimensional representations, one must also fuse in the quantum 
space. This can be achieved simply hy iterating the fusion procedure. (In the case 
of AY), see [6].) In this way, one can generate an even larger class of integrable 
quantum-algebra-invariant chains. 

The formulation of quantum current algebra of [16] bears a striking resemblance 
to that of integrable open chains with quantum algebra symmetry. The fusion re- 
sults presented here should also be relevant for quantum current algebras in higher- 
dimensional representations. 
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