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Fusion procedure for open chains
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Abstract. We have recently generalized Sklyanin’s approach of constructing open inte-
grable quanium spin chains io the case of PT-invariant R matrices. Here we formulaie
a fusion procedure for such chains. In particular, we show that the fused transfer matrix
can be expressed in terms of products of the original transfer matrix and products of
certain quantum determinants which can be explicitly evaluated. Applications of these
results include constructing open integrable higher-spin chains, as well as obtaining func-
tional equations for transfer-matrix eigenvalues, which may be solved by an analytical
Bethe ansatz.

1. Introduction

Given a trigonometric R matrix (i.e. a solution of the Yang—Baxter equation) related
to the fundamental representation of a Lic algebra g, the so-called fusion procedure
[1] provides a way of constructing new R matrices related to higher-dimensional
representations of this algebra. Such an R matrix can be used to construct a closed
integrable quantum spin chain of higher spin, whose transfer matrix is related to that
of the corresponding chain in the fundamental representation. That is, the fusion
procedure for R matrices implies a fusion procedure for the corresponding closed-
chain transfer matrices. This result is important for solving [1, 2] the higher-spin
chain. Moreover, this result also leads to a functional equation for the eigenvalues of

+h e [/ ted Thic £ M M - iti 3
these transfer matrices. This functional equation, together with an additional equation

implied by the unitarity of the R matrix, can be solved through the so-called analytical
[3] Bethe ansatz,

Sklyanin [4] introduced a novel approach for constructing open integrable quantum
spin chains, whose R matrices are symmetric (i.e. both P and T invariant) as well as
unitary and crossing-unitary. An important element of this approach is the so-called
K matrix, which can be interpreted as the amplitude for a particle to reflect elastically
from a wall. In general, there is a family of /' matrices which is compatible with a
given R matrix. Given such R and K matrices, one can construct a corresponding
open-chain transfer matrix. For the special case of spin-1 A(ll), the eigenstates and
eigenvalues of this transfer matrix can be determined by an algebraic Bethe ansatz.
(This model was first solved via the coordinate Bethe ansatz by Alcaraz et af [5).)

In [6), a fusion procedure for A(,l) K matrices was formulated, and was used to

solve the open spin-1 A(ll) chain with boundary terms.
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For particular choices of boundary terms (corresponding to particular K matri-
ces), the spin s = 1 and 1 AD chains have the quantum algebra symmetry U, [su(2)]
[7-9]. For ¢ a primitive root of unity, these chains are related to the ¢ < 1 and ¢ < 2
unitary minimal models, respectively [5, 7].

We have recently generalized [10] Sklyanin’s approach of constructing open inte-
grable chains to include non-symmetric R matrices which are only PT invariant. All
of the trigonometric R matrices found by Bazhanov [11] and Jimbo [12] are of this
type. We have used this formalism to construct a large class of integrable models
which have quantum algebra invariance [13, 14].

In this paper, we formulate a fusion procedure for K matrices corresponding to
such non-symmetric R matrices. Furthermore, we deduce a fusion procedure for the
corresponding open-chain transfer matrices. These results can be used to construct
integrable open chains with spins in higher-dimensional representations of an arbitrary
algebra g. In general, these representations are reducible, ie. the chains involve spins
in two or more irreducible representations. This suggests that there may be a further
higher symmetry in such models. (The same is true for the corresponding closed
chains.)

In a separate publication [15), we use these fusion results and an analytical Bethe
ansatz to solve the large class of models found in [13] and [14] which have quantum
algebra symmetry. We find that the Bethe ansatz equations for these open chains
are given by certain ‘doublings’ of the Bethe ansatz equations for the corresponding
closed chains.

2. Fusion procedure for R matrices

We begin by reviewing the fusion procedure for R matrices. We assume that the R
matrix, which acts on C™ ® C™, obeys the Yang-Baxter equation

Ry = v)Ry(u) Ryg(v) = Rog(v) Ryz(u) Ryp(u —v) 2.1
as well as PT symmetry
PraRp(w)Pyy = Ry (1) = Ryp(u)n™ (2.2}

where P, is the permutation matrix, P,(r® y) = y® « for x,y € C", and ¢;
denotes transposition in the <th space; unitarity

R..(WR..(—u) = {{w) 2.3)
12\ 7 21\ / Al P L8 J

where ((u) is some even scalar function of u; crossing symmetry
Rip(u) = ViR (—u = p)'* V) = VP Riy(~u - p)" V) (2.4)

where V2 = 1 (in this paper, we use the notation V; = V@1, V, = 1 ® V)); and
regularity

Ry5(0) = ¢(0)/2Py,. 2.5)
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We record here for future reference the useful identity
ViR ()W) = Ry (w) V. 2.6)
A fact which is essential for establishing the fusion procedure is that at u = ~—p,

the matrix R,,{u) degenerates to a quantity proportional to a projector onto a one-
dimensional subspace. Indeed, one can show that

=_ 1 1
P, = WRIZ(_F’) = ng’F’{ng @7
obeys
RY .
and
PLALPL =tr, (PﬁAu) Py 2.9

where A is an arbitrary matrix acting on C™ @ C™. Thus, P}, defined as

Pr=1-P; (2.10)
is q-'3130 a projector. Note that these projectors are not symmetric, ( P5)1 = Pf #
Pm.For v = u + p, the Yang—Baxter equation (2.1) degenerates to

Pps Rug(u) Rg((u + p) = Rog(u+ p) Ryg(u) P @11)
which implies that

PLR3(u) Rys(u + p) Pl = 0. (2.12)
This result can be used to show that the ‘fused” R matrix

R153(n) = P Ry(u) Rys(u + p) P (2.13)
obeys a generalized Yang-Baxter equation,
Rijgya(u — v) Rygya(u) Rag(v) = Ryg(v) Rypgq(u) Rypgya(n — v). (2.14)
Because the projectors P are not symmetric, these equations have a second solution,

Rzlz)a(") = R(m)s(u -p)= }324; Rog(u —~ P)Rm(“)ﬁﬁ' (2.15)

These two solutions are presumably related by a gauge transformation.
Similarly, one finds the fused R matrices

Ra(m}(") = 1312332(“ - p)Rm(u)Pf‘i (2.16)

Riypypy (1) = Rappyy(u+ p) = Py Ryy(u) Ryy(u + 0) Y. 2.17)
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Indeed, one can generate an entire hierarchy of fused R matrices which obey Yang—
Baxter equations of the form

Rs,s,(u - ")Rs.s;(u)Rngn(v) = Ra,a,(v)Rna;(u)Ra,ag(u’ - ‘U). (2‘18)

However, we shall not explicitly consider higher fused R matrices here.

The unitarity and crossing-symmetry properties of the fused R matrices can be
determined from a knowledge of the cotresponding properties of the original R
matrix, We find that

Rpgya(u) Ry (—u) = ((u)((u + pYPh (2.19)
and
R(12)3(u) = V(zl)ha)a(_u - P)tav(lz) = V3 Ra(lz)(—u - P)hvata (2.20)
Ra(lz}(u) = V3R gpa(—u — pYOVy = Vi;lf) Ré(m)("“ - P)tav{tllgz, @2
where

Vi = PRVIV, P (2.22)

In obtaining the crossing-symmetry formulae, we use the result
PLV,V,Pt =0 (2.23)

which follows from the degeneration of the identity (2.6) at u = —p.

3. Fusion procedure for K matrices

As mentioned in the introduction, K matrices are important ¢lements in Sklyanin’s
construction of open integrable chains. For a PT-invariant R matrix, the fundamental
‘reflection-factorization’ relations obeyed by K~ (u)} and K+ (u) are [4, 10]
Ryy(u = v) K7 (u) Ryy (v + v) K5 (v) = K5 (v) Byp(u+ o) Ky (w) Ry (u = v)
(3.1)

and
Ryp(—u+ v) KH )" M Ryy (—u — v - 2p) M, K7 (v)*

- {;(”)12 M Ryy(~u-v— Qp)Ml_lKi"(u)“Rm(—u +v) (3.2)

respectively, where M = V'V. These relations correspond to the constraint of
factorized scattering in the presence of a wall.

In order to obtain a fusion formula for K~ (u), we follow the same strategy em-
ployed for R matrices: namely, we consider the degeneration of its defining relation.
Setting v = u + p in (3.1), we obtain

PLKT (w)Ryy(2u + p) K5 (u+ p) = K (w4 p)R;,(2u+ p) KT (W) Py (33)
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which implies that

PLKT (u)Ry(2u+ p) K5 (u+p) B = 0. (34)
This result can be used to show that the fused K~ matrix

Ky (w) = PLKT (W) Ry (2u+ p) K5 (u+ p) Py (3.5)
obeys the reflection—factorization relation

Rs(lz)(“ - U)KE(“)R(w)s(U + ”)Kaz)(v)

= K15y (v) Ryyp(u + v) K3 (u) Ry p5(u — v). (3.6)

The quantity K zl‘z)(u) = K (‘21)(u — p) satisfies a similar relation, with R and R/
interchanged.
We now turn to _k_'“‘(u) The depeneration of n 2\ 1mnhes (after nermutlnﬂ

Lol laiiall B Sse, SRR ekl

1 «+ 2, transposing, and shifting u — u 4 p) that

B K (w)" My Ry (—2u — 3p) M5 KF (u + p)** P = 0. (3.7
This result and the identity

Ml-lRlz(u)Ml = M2R12(u)M2'1 (3.8
can be used to show that the fused K+ matrix

KW' = B KH(u) My Ry (=2u — 3p) M7 KF (u + p) P, (3.9

obeys the relation
Ryjga(—u+ v)"2 KF (u)* M:;le{m}(_u —v—2p)® MaK(-'iz)(v)t”

=K

fiy (0)12 My Ry (—u—v=2p)" > Mg VKT (w)' Ry gy (—utv)i,

(3.10)

Further justification for considering this relation will be given in the next section.
There is an automorphism [4, 10] between the K~ and K'* relations, (3.1) and

(3.2): namely, given a solution K~ (u), then K'~(—u — p)*M is a solution K*(u).

One can establish a similar automorphism between the relation for K {12)(u) (3.10)

and the relation for K m)(u)
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4. Fusion procedure for transfer matrices

Given an R matrix with the properties (2.1)—(2.5) and K¥ matrices satisfying (3.1)
and (3.2), the corresponding open-chain transfer matrix #(u) is given by [4]

t(u) = tr KT (u) 77 (u) (.1
where 7~ (u) is given by

T~ () = T(u) K~ (u)T(w) “.2)
and T(u), T(x) obey

Ryo(v = 0)T () Ty(v) = To(v) Ty (w) Ryy(u ~ v)

Ty(v) Rig( + ©) Ty (w) = Ty (w) Ryp( + v) Ty(v)

Ryo(—t + 0)To(v) Ty (w) = T3 (w) Ty (v) Ryy(—u + v). (4.3)
T(u) is called the monodromy matrix, and T'(u) obeys the same algebraic relations
as T(—wu)~!. The quantity 7~ (u) satisfies the same relation (3.1) as K~ (u); and
the transfer matrix constitutes a one-parameter commutative family

[t(u),t{v)]=0 for all u,v. 4.4)

Our first task is to construct a transfer matrix #(u) for the fused quantities that
we have described. Let us consider

) = tryy K (w) Ty (w) (4.5)
where

T(IZ)(”') = Tuz)(u)K(-lg)(u)T(zl)(u + p) {4.6)
and

T(12)(u') = Pf‘iTl(u)Tz(“ + P)Pflfa Tm)(’“ +p)= }32}‘1’1‘"1(”)3?"2(“ + P)P2+1-
(4.7)

We observe that ’1'(;2)(1;) obeys the same relation (3.6) as Kaz)(u) and, therefore,
the same fusion formula holds:

Tiin(w) = PETT (w) Ry, (2u+ 0)T5 (u + 0) B “-8)
In order to establish the commutativity

[t(w),i(v)] =0 4.9)
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we generalize a similar computation described by Sklyanin [4]. In particular, we make
use of the unitarity relation (2.19), as well as the relation

M3 Ry pya(—u — 2p)'? aRaz(w)"? = ((u)((u + p)PY,  (410)

which follows from (2.19)—(2.21). Moreover, we also use the reflection—factorization

relations (3.6} and (3.10) which are obeyed by K (17 and K “‘12), respectively. Indeed,

starting from the K}, relation, it was by demanding the commutativity (4.9) that we

first obtained the K, relation.
We turn now to the main task of obtaining a fusion formula for the transfer

matrix. This involves a generalization of the trick employed in [6]. Substituting into
the definition (4.5) of #(u) the expressions (3.9), (4.8) for K az,(u) and 'T(Iz)(u),
respectively, we obtain
t(u) = trw{f’;i K3 (u+p)M; ' Ryy(~2u - 3p)

x Msz'(U)Tl"(U)Rm(M+p)T{(u+p)}- (411}

Using the identity P, = 1 — P;;, we obtain the difference of two terms:

#(u) = tro{ K (u+ p) M Ryy(—2u — 3p)
x MT'KF(u)T7 (w) Ry (2u+ )T (u+ )}
— try o { Py K (u + p) M7 ' Ry,(-2u — 3p)
x MyK ()T (w) By (2u + p)75 (u+ p)}

The first term can be expressed as a product of two transfer matrices, while the
second term can be expressed as a product of quantum determinants. Indeed, the
first term can be cast as

tr o {[KF (u + p) K (u)" M R y(—2u — 3p) M, "
x [T7 (w) Ry (2u + 0)T5 (u+ p)]}
= tr, {KF (u+ p) KH{uw)" M{ ! Ryp(-2u — 3p)"
x My [T (w) Ryy(2u + p)T; (u+0)] )
by UG (o p) KGH(w) " MY Ryp(~2u - 3p)"

x MRy (2u + P) T ()T (u 4+ 0)}.

Using the fact
M Rip(=2u— 3p)" My Ry (2u + p)' = ((2u+ 2p) (4.12)
we conclude that the first term is equal to

C(Ru +2p)t(u)t(u+ p).
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The second term can be written as
tryo{ P5y K3 (u + p) M7 Ryp(—2u — 3p)
x My K (w) PRT (w) Ryy (2u + )T (u + p)). (@.13)
Expressing P;; in terms of P[; with the help of the identity
P =V, PRV, (4.14)

and using the property (2.9) of the projector P, we conclude that the second term
is equal to a product of quantum determinants

A{K¥(u)} A{T(w)}
where
A{KH(w)} = tr, { PEVVoKS (u + 0)M; ' Rip(=2u — 3p) Mo KF (w)} - (415)
A{T(u)} =try {‘61-27'1_(“)1{21(2‘5 + )T (u + P)Vlvz} . (4.16)
In short, we have the following fusion formula for the transfer matrix

i) = ((2u+ 20)t(W)t(u+ p) - A {KH(W)} A (T ()}, (417)
This formula, which expresses the fused transfer matrix in terms of quantities related

to the original system, is the main result of this paper. The next section is devoted
to evaluating the quantum determinants that appear in this formula.

5. Evaluation of quantum determinants

Recalling the expression (4.2) for 7~ (u), one can show that A{7 ~(u)} factors into
a product of quantum determinants,

AT (w)} = 6{T(w} A {K~ ()} {T(w)} S.1)
where
§{T(u)} = b1y, { PR Ty () Ty + ) }
6 {T(w)} = tryy { Ba Ty () Ti(u + 0} ©2
ALK (w)} = tryy { PR KT () Ry (2u + p) K7 (ut )V, Vo ). $.3)

Let us now assume that the monodromy matrix T'(w} is given by the following
product of R matrices

T(u) = Rl,N(u)Rl,N—l(“)---R1,1(”) 5.4)
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and similarly

Ty(u) = Ry y(u)... Ryy_y 1 (6) Ry, (1), (5-5)
With the help of the identity
PoR, (W) Ry (vt p) P = C(u+ p)P; m=1,2,...,N, (5.6)

(which can be proved using the unitarity and crossing-symmetry properties of R(u),
and the expression (2.7) for F3), it follows that

§ {T(w)} = 6{T(u)} = ¢(u+ p)N. (5.7)

In particular, we see explicitly that all the quantum determinants are c-numbers. It
follows from the fusion formula (4.17) and the commutativity (4.9) that also

[E(u),{(v)] =0, (5.8)

Without further information about K'¥(u), the corresponding quantum determi-

nants A{K¥(u)} cannot be evaluated. Here we consider the particular case [13,
14]

K (u)=1 K*(u)= M. (5.9)

These are solutions of the reflection—factorization relations (3.1) and (3.2) provided
that the R matrix satisfies

[Rw(“), Rm(”)] =0 (5.10)
where R = P R. Jimbo has observed [12] that there is a large class of trigonometric

R matrices for which this relation is valid. The corresponding open chains have [13,
14] quantum algebra symmetry. For these K matrices, we have

A{K™(u)} =trp, {Pl_zvlszw(zu + P)}
A{KF ()} = tryy { PRV Vi Rip(=2u ~ 3p) ). (5.11)

These expressions can be further simplified with the help of some new identities. The
degeneration of the relation (5.10) at v = —p yields

Ryp(u) Py = PRy () (5.12)
which implies

Ryp(w)V, Vo Py = PRViVa Ryp(u) (5.13)
and therefore

Pl_z‘/l‘/;.)RIZ(u)PI.‘é:O' (5.14)
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One can now show that

PLViVaR () Py = g(w) Py = PRV VP Ryy(u) Py (5.15)
where the scalar function

g(u) =try, Rlz(u)vlvzpl_z (5.16)
is related to the function () which appears in the unitarity relation (2.3) by

C(u) = g(u)g(—u). (5.17)

It should be emphasized that the decomposition (5.17) is not unique. We conclude
that

A{K (uw)} =g(2u+p) A{K*(u)} = g(—2u—3p). (518)

Remarkably, for the case of quantum algebra symmetry, all the quantum determinants
in the fusion formula (4.17) are expressed entirely in terms of the known function
g(u).

6. Discussion

We have formulated a fusion procedure for open chains with PT-invariant R ma-
trices. We have worked out in detail the example of a transfer matrix for which the
auxiliary space is fused and the quantum space is not fused. These results can be
directly applied [15] to exactly solving the large class of models with quantum algebra
symmetry which we previously found [13, 14]. In order to construct and solve chains
with spins in higher-dimensional representations, one must also fuse in the quantum
space. This can be achieved simply by iterating the fusion procedure. (In the case
of A(ll), see [6)) In this way, one can generate an even larger class of integrable
quantum-algebra-invariant chains.

The formulation of quantum current algebra of [16] bears a striking resemblance
to that of integrable open chains with quantum algebra symmetry. The fusion re-
suits presented here should also be relevant for quantum current algebras in higher-
dimensional representations.
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